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Key Points 

 The probability of finding topmost supercooled water layers given cloud temperature, P(L|T), 

provides an impartial water occurrence metric  

 P(L|T) using long-term Arctic-site data shows a significant (>20%) ice habit growth impact on 

liquid occurrence (supported by simulations) 

 P(L|T) datasets can provide strong observational targets for models; an example parametrization 

for the NSA is provided 

A
cc

ep
te

d
 A

rt
ic

le
 

 

 

 

 

 

 

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences between
this version and the Version of Record. Please cite this article as doi: 10.1029/2021GL092767.

This article is protected by copyright. All rights reserved.

https://doi.org/10.1029/2021GL092767
https://doi.org/10.1029/2021GL092767
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GL092767&domain=pdf&date_stamp=2021-05-11


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Abstract 

We present an analysis of long-term data collected at Utqiaġvik, Alaska, to explore the impacts 

of cloud processes on the probability of finding supercooled water given cloud temperature, P(L|T), in 

the topmost unseeded liquid-bearing layers. P(L|T) has local minima at temperatures around -6 °C and 

-15 °C. Simulations using habit-evolving ice microphysics models suggest that these minima are the 

result of efficient vapor growth by non-isometric habits found at these temperatures. We conclude that 

habit-dependent vapor growth of ice crystals modulates the macrophysical occurrence of supercooled 

water in polar clouds, the effect of which should be included in model parametrizations to avoid biases 

and/or error compensation. Our methodology is adaptable for spherical ice treatments implemented in 

models (example parametrizations provided), amenable for use with satellite measurements to give 

global impartial observational targets for model evaluations, and may allow empirical characterization 

of bulk responses to seeding and possibly secondary ice effects.   
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Plain Language Summary 

Clouds are responsible for the highest uncertainty in climate model predictions, partially due 

to deficiencies in the representation of processes controlling the temperature-dependent cloud water 

phase, and hence, cloud impact on radiative transfer through the atmosphere. Here, we use long-term 

measurements collected at Utqiaġvik, Alaska to examine the probability of occurrence of liquid water 

clouds at a range of sub-freezing temperatures (supercooled clouds). Our methodology allows the 

robust characterization of occurrence of the highest supercooled cloud per measured atmospheric 

profile. The resultant probability enables the identification of processes affecting liquid water 

desiccation. An ensemble of model simulations indicates that significantly lower occurrence of 

supercooled clouds (by more than 20%) around certain temperatures is the result of the shape and 

associated rapid growth of precipitating ice crystals formed in these clouds. These fast-growing ice 

crystals can dry their parent clouds’ environment, occasionally resulting in cloud dissipation. We 

conclude that parametrization of these ice crystal growth rate effects should be included in large-scale 

models to better represent polar clouds. We also suggest that our method could be easily adapted for 

satellite measurements to provide a valuable observational database of global supercooled cloud 

occurrence.  
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1. Introduction 

The relative importance of the physical mechanisms responsible for the observed accelerated 

warming and greater variability of Arctic surface air temperatures, referred to as Arctic amplification 

(e.g., Serreze & Barry, 2011), is still not fully understood (e.g., Tan & Storelvmo, 2019). Much of the 

uncertainty derives from non-linear feedback mechanisms involving meridional transport of heat and 

moisture, ice-covered surfaces, and cloud processes, all of which impact the surface energy budget 

(Kay & Gettelman, 2009; Tan & Storelvmo, 2019).   

Atmospheric water in all three phases is an important regulator of the Arctic surface energy 

budget through its contribution to downwelling longwave irradiance (e.g., Curry et al., 1995; Curry & 

Ebert, 1992; Doyle et al., 2011; Sokolowsky et al., 2020), and as a result of the typical dominance of 

surface longwave over shortwave radiation at high latitudes (e.g., Shupe & Intrieri, 2004; Turner et al., 

2018). The magnitude of downwelling irradiances is modulated by the vertical distribution of water 

induced by clouds and precipitation, which changes the temperature and density of the emitting water, 

and hence, the atmospheric emissivity profiles. The dominant phase determining downwelling 

irradiances varies with season and synoptic conditions. Assuming that a model has the correct total 

water amount at a given location, how that water is phase partitioned is controlled by in-cloud 

processes and precipitation below the cloud, emphasizing the need to understand the dominant 

microphysical processes in polar clouds.    

Tan and Storelvmo (2019) explored the effects of modifying the water phase partitioning on 

Arctic amplification in the CAM5 climate model while constraining the model to satellite-observed 

condensed phase partitions at different sub-freezing temperatures. Model simulations with modified 

microphysical scheme parameters resulted in enhanced or reduced Arctic amplification, depending on 

how the model responded in distributing water through the atmosphere.  Middlemas et al. (2020), using 

the same climate model but with cloud radiative feedbacks disabled (“cloud locking” technique), found 
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that cloud feedbacks have a negligible influence on Arctic amplification. Both of these studies 

concluded that the representation of cloud processes, particularly those affecting the supercooled water 

fraction underestimation in high‐ latitude clouds, should be a priority if the community is to improve 

our understanding of the relative importance of the mechanisms driving Arctic amplification. These 

conclusions are emphasized by recent results (Zelinka et al., 2020) showing that even the latest 

generation of climate models produce higher and more variable climate sensitivity, which is strongly 

influenced by the representation of clouds. 

Our understanding of the importance of various cloud processes is guided by their signatures 

in field measurement metrics, such as water phase partitioning. Yet, phase partitioning retrievals are 

often impacted by unaccounted local influences, as well as non-symmetric instrument sensitivities at 

detecting ice and liquid hydrometeors. Moreover, because at temperatures below 0 °C greater mass, 

volume, and/or frequency of ice directly increase its relative fraction, while potentially indirectly 

decrease the fraction of liquid via accretion and/or desiccation, phase ratio statistics are susceptible to 

“double-counting” ice-related effects.  

In this study, using long-term ground-based observations from Utqiaġvik, North Slope of 

Alaska (NSA; 71.32°N, 156.61°W; Verlinde et al., 2016), we introduce an impartial metric, namely, 

the conditional probability to detect liquid water given temperature P(L|T) in unseeded topmost cloud 

layers. Even though this metric does not include explicit information about the presence of ice, the 

shape of its distribution indicates active primary-ice processes such as nucleation and growth. We 

examine these indications using parcel and one-dimensional (single-column) model simulations and 

discuss the results and implications of our analysis on efforts to constrain models. 

2. Observed P(L|T) Distribution 

To detect liquid-bearing clouds, we use sounding measurements (Holdridge et al., 2011) 

collected over 7.5 years from November 2011 to April 2019 at Utqiaġvik. Liquid-bearing cloud layers 
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are identified where the measured relative humidity (RH), linearly interpolated onto a 15 m vertical 

grid spacing, exceeds 95%, which considers the instrument measurement uncertainty. This method for 

liquid-bearing cloud detection was validated using the same dataset against high spectral resolution 

lidar phase retrievals (Silber et al., 2020b, fig. S1). 

In each of the 8,276 sounding profiles with valid RH measurements, we examine measurements 

up to the lowest height with temperature less than –40 °C. To minimize seeding effects on our statistics, 

we only retain data from the topmost liquid-bearing cloud layer in each profile that do not have 

hydrometeors detected within 60 m above cloud top (see Appendix A). This 60 m criterion also 

mitigates the influence of secondary ice production (SIP) mechanisms associated with fast falling ice 

and/or large drops, the general contribution of which to the total number of SIP events is still under 

active debate (e.g., Field et al., 2017; Korolev & Leisner, 2020; Luke et al., 2021). A cloud is flagged 

as “seeded” if, in any range gate within these 60 m, Ka-band ARM zenith radar (KAZR; Widener et 

al., 2012) echoes exist in at least 50% of the 2 s resolution measurements within 15 min after the 

radiosonde release time (see Silber et al., 2018, 2021). KAZR data are interpolated to the same 15 m 

vertical grid spacing as sounding data before use. The small allowance for KAZR hydrometeor 

detections above liquid cloud top considers the horizontal offset between the probed KAZR and 

sounding air volumes (not shown). Liquid-bearing clouds with tops below the lowest KAZR range 

gate (ranging from 165 to 225 m above ground level) are excluded from this analysis. 

The implementation of these filtering steps enables the principal isolation of primary-ice 

generating cloud layers, and hence, the implicit consideration of primary-ice nucleation, growth, and 

sedimentation on the parent clouds. The filtered dataset contains 4,410 profiles, which yields the 

distribution of the conditional probability for topmost unseeded liquid given temperature P(L|T) by 

dividing all liquid occurrences per 1 °C temperature interval by the number of occurrences of 

temperatures within the same interval.  
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The resultant P(L|T) distribution (Figure 1) depicts an intriguing pattern. The probability values 

start to increase at a temperature of -36 °C, the lowest temperature at which we reliably detect liquid 

water occurrence in this dataset. A local minimum and a plateau are observed centering at -15 °C and 

-6 °C, respectively. These deviations from a generally expected increase in liquid occurrence with 

temperature, due to decreasing activation of primary ice-nucleating particles (INP; Kanji et al., 2017; 

Knopf et al., 2018), indicate that other cloud processes impact the liquid water occurrence at these 

temperatures. We postulate that these observed signatures stem from the amplified vapor depositional 

growth that occurs near –15 °C and –6 °C due to ice habit  (Fukuta & Takahashi, 1999). Dendritic and 

needle crystals at these respective temperatures grow rapidly (Chen & Lamb, 1994) and thereby reduce 

liquid water occurrence (Wegener-Bergeron-Findeisen process). 

3. Modeling Support for Ice Habit Growth Impact on Liquid Water Occurrence 

To investigate our postulated mechanism, we perform parcel model simulations using 

spherically-shaped and habit-evolving (spheroidal) ice microphysics schemes. The parcel model (Sulia 

& Harrington, 2011) uses a Lagrangian bin microphysics scheme with spherical and habit-evolving 

ice treatment (Harrington et al., 2013b). The model is initialized with a specified maximum vertical 

motion, and temperature, pressure (900 hPa), and RH (95%) representing conditions just below cloud 

base. The liquid microphysics is initialized with a lognormal distribution of cloud condensation nuclei 

(CCN) at their equilibrium size (following Feingold & Chuang, 2002) and a concentration of 50 cm-3 

(see Text S1). Ice is nucleated instantaneously, is initially spherical, and conforms to a gamma size 

distribution based on a given INP concentration (Harrington et al., 2013b). Ice habits develop 

following the theory of Chen and Lamb (1994), which models habit evolution with a temperature-

dependent inherent growth ratio (IGR). The IGR is defined as the ratio of the basal to the prism face 

growth rate, and it is a measured quantity. Spherical growth is modeled with an IGR of unity, whereas 

IGR < 1 (IGR > 1) produces planar (columnar) crystals. The parcel motion follows a sinusoidal pattern 
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over a fixed depth (400 m) while tracking the microphysics without particle fallout (see also Korolev 

& Isaac, 2003).  

The model is used to calculate liquid water mixing ratio (qliq) and liquid water decay rate (τdecay) 

within mixed-phase clouds (subfreezing temperatures) in an ensemble of simulations. The ensemble 

is composed of simulations initialized with 10 different values of INP concentration between 0.1 – 

10.0 L-1 (spaced logarithmically), 17 temperatures between -20 °C and -4 °C (1 °C increments), and 5 

maximum vertical velocities between 0.5 – 2.5 m/s in 0.5 m/s increments, resulting in 850 simulations 

each for spherical and habit-evolving ice microphysics. The range of these parameters is consistent 

with measurements over the NSA during the Mixed-Phase Arctic Cloud Experiment (M-PACE; 

Verlinde et al., 2007), the Indirect and Semi-Direct Aerosol Campaign (ISDAC; McFarquhar et al., 

2011), as well as long-term statistics at that site, mainly around autumn (e.g., Lubin et al., 2020; Shupe, 

2011) 

The example simulation output in Figure 2a demonstrates the impact of the oscillatory parcel 

motion on the qliq increase and decrease. Because ice particles remain in the parcel (no fallout), the ice 

particles grow between consecutive cycles, evident by the general increase in ice mixing ratio (qice), 

while a rather moderate decrease in size is observed during parcel descent of each cycle. The 

persistently increasing ice particle surface area produces a greater depositional flux of vapor, which 

reduces the vapor availability for the liquid phase, resulting in stronger evaporation and a decrease in 

qliq peak near the node of each oscillation. It is arguably the continuous erosion of the peak in qliq that 

describes the strength of the simulated cloud desiccation, and this can be quantified with a decay time-

scale (τdecay), determined by calculating the time it takes for qliq to fall to 90% of its global maximum 

value. This moderate decrease threshold enables a τdecay value to be calculated in all simulations 

including those initialized with diminished activatable INP concentrations resulting in relatively high 

global minimum qliq peak value. The τdecay is computed per simulation by fitting a polynomial curve to 

the local qliq maxima (gray curve in Figure 2a).  
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Comparison between the spherical and habit-evolving ice ensembles illustrates the impact of 

habit growth under different model initializations (Figure 2b). While in spherical ice simulations τdecay 

decreases commensurately with temperature, habit-evolving simulations using the same model 

initialization show distinct local τdecay minima at mean parcel temperatures corresponding to dendritic 

and needle growth (respectively, -15 °C and –7 °C; Bailey & Hallett, 2009).  At these temperatures, 

the IGR reaches its lowest and highest values, respectively, thus promoting strong dendritic and needle 

growth. The rapid depositional growth of these crystals could generally drain available water 

molecules faster, and hence, augment liquid phase evaporation. Ice growth patterns at temperatures 

closer to -10 °C, where the IGR ≈ 1, result in more isometric ice particles (e.g., Fukuta & Takahashi, 

1999), and hence, the τdecay difference between the spherical and habit-evolving ice simulations 

minimizes (see Figure 2b). 

Even though the parcel model represents only a limited number of the physical aspects of 

mixed-phase cloud processes, it produces similar patterns to the observational P(L|T) analysis. To 

show that the parcel model results are not a consequence of the simplified framework, we also examine 

a smaller ensemble of one-dimensional (1D) cloud model simulations. This 1D model (Golaz, 1998; 

Simpfendoerfer et al., 2019) represents additional cloud-related processes that are missing in the parcel 

model such as dynamical feedbacks (following Bechtold et al., 1992), radiation (Harrington, 1997),  

and particle sedimentation. The model includes a bulk 2-moment version of the same habit-evolving 

ice microphysics used in the parcel model (Harrington et al., 2013a) and 1-moment cloud droplet 

treatment. Primary ice crystal nucleation follows the simplified diagnostic approach of Ovchinnikov 

et al. (2014), in which INP are activated in liquid-bearing grid cells until a maximum specified ice 

concentration is reached (see Text S2 for detailed model description). 

In the simulations performed here, the model is initialized with the sounding profile used for 

the ISDAC mixed-phase model intercomparison study (Ovchinnikov et al., 2014). The ice-

precipitating supercooled cloud layer was relatively long-lived and had a temperature of about -15 °C, 
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thus providing contextual similarities to the observational analysis in this study. To conduct 

simulations at different cloud temperatures we modify the baseline sounding by offsetting the initial 

potential temperature (θ) profile by  while adjusting the water vapor mixing ratio (qv) such that the 

initial RH profile remains the same. We vary θ such that the mean cloud temperature in different 

simulations spans a range between -4 °C and -20 °C, while the diagnostic INP concentration is 

initialized at 9 arbitrarily-selected values ranging from 0.1 - 30 L-1. The CCN number concentration is 

fixed at 50 cm-3 while aggregation processes are turned off.  

Unlike the parcel model, liquid-bearing clouds formed in a 1D model simulation have a more 

complex evolution and may dissipate or persist through the 8-h simulation time. Therefore, applying 

the τdecay approach to the 1D model simulations is not straightforward. Instead, we use a different 

statistic, namely, the qliq relative occurrence fraction. We define the qliq relative fraction as the ratio of 

the number of liquid-bearing grid cells (qliq ≥ 10-4 g/kg; e.g., Figure 2c) throughout a simulation to the 

sum of all model grid cells until cloud dissipation time or the end of the simulation (the earlier of the 

two).  

Similar to the parcel model, the 1D simulation ensemble output shows a distinct habit impact 

on liquid-bearing cloud occurrence relative to spherical ice treatment (Figure 2d). For simulations with 

spherical ice, the qliq relative fraction decreases commensurately with temperature. In contrast, the 

habit-evolving simulations exhibit distinctive valleys centered at mean cloud temperatures of -15 °C 

and -7 °C. These results indicate that the parcel model agreement with the observations is not the result 

of its simplified framework.  

Taken together, the 1D and parcel model results suggest that the minima in the observed P(L|T) 

distribution may be due to habit-dependent growth.  
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4. Discussion 

We presented the probability of detecting topmost unseeded liquid cloud layers given 

temperature P(L|T). A common problem in constraining model simulations using observational targets 

based on field and satellite measurements is that bulk statistics are often “contaminated” by multiple 

active processes such as seeding, riming, and SIP, which predominantly require fast falling ice particles 

and large droplets (e.g., Jensen & Harrington, 2015; Korolev et al., 2020; Korolev & Leisner, 2020). 

Here we were able to mitigate this “contamination” of liquid-bearing cloud observations by isolating 

the topmost and unseeded liquid layers, evident by the different P(L|T) distributions generated using 

all detected liquid-bearing cloud layers or by including seeded cloud layers (see Appendix A). The 

topmost unseeded P(L|T) distribution (Figure 1) provides a clear indication of ice habit vapor growth 

on supercooled water occurrence in long-term field observations.  

Analyses reported in the literature do provide some indications for habit growth impact on 

water phase occurrence statistics, mainly around -15 °C (e.g., Hu et al., 2010; Nomokonova et al., 

2019; Shupe, 2011; Silber et al., 2020a; Wang et al., 2018; Zhang et al., 2019). In these cases, the 

analysis often incorporates full datasets without explicit isolation of certain ice-related processes (as 

in Figure A1), and/or the probability density function of temperature given liquid, P(T|L), and/or a 

combination of liquid and ice occurrences (phase ratios). Phase ratios derived from single or multiple 

remote-sensing instruments suffer from instrument detectability limitations (e.g., full attenuation of 

lidar signals in liquid-bearing clouds, stronger ice radar reflectivity in the dendritic-dominated 

temperature regime). P(T|L) statistics or statistics calculated without explicit dataset filtering may 

inextricably convolve spatial and temporal water occurrence variability in the reported values and 

distributions. Therefore, such statistics are often biased and introduce difficulties in performing direct 

comparisons with other observational or model output datasets of liquid water occurrence. Moreover, 

the ice habit-dominated regimes around -15 °C and -6 °C impact both liquid and ice occurrences, thus 

emphasizing “double counting” biases in phase ratio statistics. This potential for “double counting” 
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ice effects, a result of liquid and ice process co-dependencies, suggests that the evaluation of liquid 

water and ice occurrence statistics in observations and models should be performed separately.  

P(L|T) of the topmost unseeded cloud layers serves as an impartial statistic with absolute values 

that are comparable to other dataset statistics calculated following the same methodology. The topmost 

unseeded liquid-bearing layers’ subset required in this methodology can be easily isolated in datasets 

from spaceborne instruments such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; 

Winker et al., 2003). Therefore, coordinate-dependent P(L|T) can be estimated using satellite 

observations and reanalysis temperature data and serve as a robust observational target for large-scale 

model evaluation spanning both supercooled and warm clouds. From a contextual physical perspective, 

statistics based on unseeded cloud layers essentially incorporate only primary ice-related processes 

(e.g., Zhang et al., 2018), and hence, are particularly valuable to most current generation large-scale 

models, which either lack or have a deficient representation of SIP (e.g., Field et al., 2017; 

Sotiropoulou et al., 2021) 

Because most large-scale models including the latest generation climate model sub-group do 

not include habit-evolving or habit-dependent microphysics, the ice habit signature in the observed 

P(L|T) imposes an observational constraint that cannot be reproduced by these models without error 

compensation. To address this issue and thereby provide an observational constraint that is generally 

reproducible, supported by the parcel and 1D modeling results (Figure 2), we fit a 6th order polynomial 

to the observed P(L|T) using data points (purple markers in Figure 1) corresponding to temperatures at 

which more isometric ice particles typically develop (e.g., Bailey & Hallett, 2009). Using this 

approach, we estimate the P(L|T) that is consistent with the spherical particle assumption common to 

many models, which is described by  

(1) 𝑃(𝐿|𝑇)|𝑠𝑝ℎ𝑒𝑟𝑒𝑠 = −8.494 · 10−10 𝑇6 − 1.055 · 10−7 𝑇5 − 5.022 · 10−6 𝑇4 − 1.126 ·

10−4 𝑇3 − 1.130 · 10−3 𝑇2 − 1.648 · 10−3 𝑇1 + 0.05354,   
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where T is in °C (purple curve in Figure 2). We argue that this fitted P(L|T)|spheres can serve as an 

observational target for large-scale model evaluation using coordinates corresponding to the NSA (how 

representative this distribution is to other locations should be examined but is beyond the scope of this 

study).  

To estimate the habit impact on the P(L|T) distribution, we separately fit two Gaussians to the 

residual set of points (at temperatures corresponding to the green markers in Figure 1) after subtracting 

the observed P(L|T) curve from the polynomial fit (μ1 = -4.789, σ1 = 2.699, A1 = 0.01047, μ2 = -14.12, 

σ2 = 2.708, A2 = 0.004386; Ai is the normalization factor in units of °C-1). As seen in Figure 1, the 

polynomial minus two Gaussian fits (green curve) represents more than 99% of the information in the 

P(L|T) distribution. The magnitude difference of the habit-included fit relative to the spherical-ice 

estimated fit (Figure 2e) shows that ice shape effects are directly responsible for more than 20% of 

supercooled water deficit in habit-dominated temperature regimes, in agreement with the modeling 

results. This observed habit growth magnitude is significantly smaller than the parcel model output 

around -15 °C, likely because particle fallout is not included.  

The observed ice-habit impact on the P(L|T) distribution could theoretically arise from 

processes not represented in the parcel and 1D models (e.g., large-scale advection, surface 

heterogeneity, detailed turbulence treatment). Yet, the impact of such processes must systematically 

occur around -15 °C and -6 °C and not at other temperatures. Assuming, for discussion purposes, that 

our seeded cloud filtering leaves a significant amount of unfiltered SIP effects in the data subset, the -

6 °C minimum could be amplified by these SIP signatures. SIP could also occur at -15 °C, but then a 

less well-observed process than dendritic growth needs to be postulated (e.g., Field et al., 2017; 

Korolev & Leisner, 2020). Altogether, currently the simplest most likely explanation for the P(L|T) 

distribution shape is habit growth effects.  
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5. Summary 

The probability for detecting liquid water in topmost unseeded cloud layers given temperature, 

P(L|T), can serve as a robust observational metric. The utilization of this metric precludes 

overweighting ice effects (e.g., via “double counting” in the case of phase ratios) yet still emphasizes 

the impact of ice nucleation and growth on supercooled water occurrence, as also indicated by model 

simulation ensembles. The observational and modeling results indicate that primary ice habit effects 

can diminish supercooled water occurrence by a few tens of percent on first order, and hence, need to 

be implemented in microphysics schemes to properly represent cloud processes without introducing 

error compensation and/or biases impacting model evaluation using observations. Knowing that habit-

evolving microphysics schemes are not on the near horizon for the bulk of large-scale models, we 

provided a framework to use P(L|T) statistics as observational targets for such models (e.g., climate 

models). This framework might also fit models that already include some SIP parametrization (see 

Appendix A). The methodology applied in this study can be easily adapted to satellite measurements, 

and ultimately, provide local and/or regionally integrated P(L|T) distributions, which could be adjusted 

for spherical ice implemented in most models. These distributions will offer strong observational 

benchmarks for large-scale model evaluation from subfreezing to warm temperatures, which are not 

limited to polar latitudes. We propose that our methodology produces robust liquid occurrence 

statistics, needed because the community currently lacks comprehensive observational datasets of 

global water phase mass distribution. 

Appendix A: Impact of Seeding on P(L|T) 

Figure A1 depicts P(L|T) distributions based on all detected supercooled cloud layers, the 

topmost detected layers, and the topmost detected layers while excluding seeded clouds. With all 

detected layers included, the local P(L|T) minimum at -15 °C is relatively shallow while the P(L|T) 

plateau observed in the topmost unseeded layers’ distribution (same as Figure 1) is obscured by 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

numerous supercooled water detections (e.g., seeded and/or embedded layers) forming a steep P(L|T)  

slope. These detections also obscure seeding effects that are observed in the distribution using all 

topmost layers (Figure A1a). When all (seeded and unseeded) topmost cloud layers are compared with 

the topmost unseeded layers, indications of riming effects on habit growth become discernable, mainly 

in the normalized distributions (Figure A1b). The distribution based on all topmost layers shows a 

slightly shallower local minimum around -15 °C relative to the unseeded layer distribution, consistent 

with reduced habit-induced ice mass vapor growth as a result of riming (relative to unrimed ice; see 

Jensen & Harrington, 2015). Riming-induced effects are also visible around -5 °C, where occasional 

SIP likely impacts supercooled cloud properties, resulting in a deep local minimum in the P(L|T) 

distribution. This potential SIP influence on P(L|T) is centered at a slightly higher temperature relative 

to the habit growth plateau seen in the unseeded case. Taken together, the comparison between the 

three distributions suggests that the methodology implemented in this study can mitigate riming-

induced effects on the P(L|T) distribution and largely isolates primary from secondary ice effects on 

supercooled water occurrence. 

We note that our fitting methodology (Section 4) can generally be applied on the data subset 

containing all topmost layers, for example, the two curves in Figure A1a. The purple curve shows a 

rough estimate for spherical ice calculated by adding the unseeded subset’s habit Gaussian fits to the 

green curve. However, we recommend using fits for such subsets with caution, due to the perplexing 

entanglement of confounding factors; that is, seeding and SIP effects. 
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List of Figures: 

Figure 1: Probability of topmost unseeded liquid given temperature, P(L|T) (bars). The purple 

curve shows a 6th order polynomial fit using the distribution data points denoted by the purple 

markers, which represents a qualitative distribution estimate for spheres. The green curve 

represents a fitted distribution resulting from subtracting two separate Gaussian fits (using the 

green-color marked data points) for each of the two extreme habit growth regions around -15 

and -6 °C from the sphere-estimated curve (see text for details). The coefficient of determination 

(r2) for the green curve is shown at the top of the figure. 

Figure 2: (a) Parcel model output liquid water (black) and ice (green) mixing ratios (qliq and qice) 

using habit-evolving ice microphysics, ice nucleating particle (INP) concentration of 0.1 L-1, 

initial temperature of -12 °C, and maximum vertical motion of 0.5 m/s. The gray curve illustrates 

the 6th order polynomial fit to qliq peaks. The gray marker denotes the global qliq maximum, and 

the red marker designates the time on which the fit’s value is 90% of the global maximum, from 

which the liquid decay time (τdecay) is determined (see text for details). (b) Parcel model 

simulation ensemble mean τdecay for spherical and habit-evolving ice microphysics (see legend) 

as a function of mean parcel temperature. The error bars represent the mean ± 1σ. (c) One-

dimensional model output for habit-evolving ice using a diagnostic INP concentration of 1.0 L-1 

and temperature profile offset of 3 °C. The color-scale illustrates qliq while the black (red) 

contours denote qice (temperature). (d) As in panel b but showing the one-dimensional model 

simulation ensemble mean qliq relative occurrence fraction as a function of mean liquid-bearing 

grid cell temperature. (e) Parcel (one-dimensional) model simulation ensemble mean τdecay (qliq 

relative fraction) magnitude change in habit-evolving ice simulations relative to spherical ice 

together with the estimated P(L|T) magnitude changes calculated using the observationally-

based fits (see legend and text for details). 
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Figure A1: (a) P(L|T) distributions based on all detected supercooled cloud layers, the topmost 

detected layers (per liquid-bearing sounding profile), and the topmost detected layers while 

excluding seeded cases (see legend). The green curve denotes the combination of a 6th order 

polynomial and two Gaussian fits to the “topmost layers” distribution (r2 = 0.998; similar to the 

green curve in Figure 1), and the dashed purple curve shows the spherical ice fit for this subset 

(see Appendix A). (b) same, but with the two topmost layer distributions normalized such that 

P(L|T) at -10 °C equals to the full dataset (“all layers”) value (dashed black curve designates the 

obstructed “all layers” bars). 
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